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Significant Effects of Nonconjugated Remote
Substituents in Catalytic Asymmetric Epoxidation

Under our previously reporteid situ conditions>*! epoxidation
of symmetricalmeta or para-substitutedrans-stilbenes6 and
7 catalyzed by chiral (85R)-ketones1l—5 all gave the §9-
epoxides as the major products. As suggested by the X-ray
structure of keton@ (Figure 1), (5,5R)-dioxiranesla—5aadopt
the most stable chair conformations with alkyl substituents at the
equatorial positions and a 2-chloro atom at the axial position
(Figure 2). Approach by bulky substrateésnd? from the axial
face is considered unlikely due to the steric hindrance of axial
protons H-3 and H-5. For the equatorial approach, there are two
Since Jacobsen’s report on electronic effects of remote sub-possible spiro TS. The sterically favored one {|Ti&as phenyl
stituents in asymmetric epoxidation catalyzed by chiral (salen)- groups oftransstilbenes positioned away from the 2-chloro atom
Mn(lll) complexes! the electronic tuning has been recognized Of dioxiranesla—5a, leading to §S)-epoxides. The disfavored
as an important tool in catalyst design. While the origin of one (TS), giving rise to the RR)-epoxides, has steric clash
electronic effects is poorly understood, a great deal of success inbetween the 2-chloro atom and the phenyl groups. The free
asymmetric catalysis has been achieved by changing conjugatedenergy difference between T&nd TS determines the enantio-
remote substituenfs$ Here we report that electronic properties — selectivity!?
of nonconjugated remote substituents on the catalysts have sig-
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nificant effects in asymmetric epoxidation by chiral dioxiranes. 1 X=F) Z o .
We also propose an electrostatic model to account for the elec- WC o Oy )
tronic effects of those substituents. 2 (X=0l _
Chiral dioxiranes, generated situ from chiral ketones and s oo Y <) 6 @ .
Oxone, are excellent reagents for asymmetric epoxidation of un- . =0 7 7 g
. . ; ; ; s : _
functionalized trans-olefins and trisubstituted olefirfs? As 7\)( 4 X=0By | _ héebrbci\Me’ 2= tBu, Mo, H, 7\(;.
Ar ketone catalyst QO Ar 5 X=H) o ¢ F. Br, OAc 8
Ar/=/ Oxone/NaHCO3 Ar
DME/H,0 Molecular model® suggested that the 2-chloro atom is very
n,pH 7-7.5 close to the dioxirane group iba—5a and therefore is unlikely

reactions between dioxiranes and olefins follow a concerted one-

step process with a spiro transition state (¥%5§,81° chiral
dioxirane epoxidation offers an ideal system for understanding
the electronic effects of remote substituents on enantioselectivity.

to have steric interactions with the remopara- or meta
substituents ofrans-stilbbeness and7 in either TSor TS;. This
implies that the enantioselectivities of epoxidation are not sensitive
to the steric sizes but possibly to the electronic properties of those
remote substituents. Indeed, by using ket@n&s the catalyst,

To probe the effect of nonconjugated remote substituents, a newhigher ee’s were obtained for the more electron-rich olefins, and

series of chiral ketone catalysts-5, prepared fromR)-carvone,
was selected. Ketonels-5 all have a quaternary carbon ai C
position, but they differ in the remote substituent gtp@sition.
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the Hammett plot of log(er) against eithey, or o, showed a
linear relation (Figure 3:;0 = —0.84 andr = 0.989 for plot A,

p = —0.86 andr = 0.985 for plot B)!* The negative slope of
plot A or plot B could be understood by considering the
unfavorable nz electronic repulsion, present in J8ut not in
TS, between the 2-chloro atom of dioxiranes and the phenyl
groups oftransstilbenes (Figure 2). The evidence for thern-
electronic repulsion came from the observation that, despite of
smaller steric size of Cl atom compared to the methyl group,
ketone2 gave much higher ee (85%) than its €pimer ketone

8 (32% ee) for epoxidation ofransstilbene under the same
reaction conditions. Fatrans-stilbenes with stronger electron-
donating substituents (smallex, or o, values), the nz electronic
repulsion in Tg@becomes more severe, thereby giving higher ee’s.
Note that the slope of plot A or plot B (the apparent reaction
constantp) is equal tops — pg, Where reaction constantg and

pa represent charge distributions of T&hd TS, respectivelyt®
The negative value op in plot A thus means thgt; is more
negative or less positive tham, suggesting that more positive
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Figure 1. X-ray structure of ketone 2 (ORTEP view). Eoo'
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Me. hge F F
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5 c:‘.\,os‘ Figure 3. Hammett plots: A, asymmetric epoxidation of olefiidy
&X Vo catalyst2 (ee range: 7489%); B, asymmetric epoxidation of olefiffs
H H ° by catalyst2 (ee range: 7287%); C, asymmetric epoxidation bns
M "49 5 3 ) H Ph. O _H stilbene by catalystd—5 for 22 h in DME-H,0 (3:2 v/v) (ee range:
8] G Me Q &‘c/ - 4 42—87%); D, asymmetric epoxidation oans-stilbene by catalysts—3
X \73 & e P,h and>5 for 1 h in DME—H,0 (3:2 v/v;ll) and CHCN—H,0 (2:3 v/v;®),
& / (S.S)-epoxide respectively (ee range: 4B8%).
la(X=F) TS favored
2a(X=Cl) This implies that, in both TSand TS, the negative ends of polar
3a(X=0H) Ve C—X bonds are closer to the olefin double bond than their positive
4a (X = OE) Me (i Me ends. By favorable field effects, more polar substituents (higher
Sa(X=H) \ s\rvc\%( F values) should stabilize T&ore than T$and thus give higher
+ Pl vod ee’s, which explains the positive slope of plot C in Figure 3.
Ph H ° 7’4 Furthermore, the Hammett plot of log(er) agaiRstias found to
?=<Ph Q He O Ph have a larger slope when a lower polarity solvent (e.g., 40% water
"‘\g.;c\ —_— >1—3< in DME) was used (Figure 3: plot B¥. The observed solvent
d H Ph H effect on enantioselectivity lends additional support to the
(R.R)-epoxide electrostatic model. The strong electrostatic effect in aqueous
TS gisfavored solutiong? is not surprising because in water the transition state
) ) N . o for dioxirane epoxidation is much more polarized than the
Flgure 2. Splro transition states for dioxirane epOX|dat|0n. reactant§.7~24

charges or less negative charges are developed on the olefin Our results represent the first report on eIecFromc effect§
16.17 imparted by nonconjugated remote substituents in asymmetric
double bond of Tgthan that of T catalysis. The significant effect of gCsubstituents of chiral
Molecular models also revealed that nonconjugated remote ketogeﬂ;S on engntioselectivit (4—2887% ee AAG* ca, 1 keal
substituents at the {position of dioxiranesla—5a were too mol~t) demonstrates the im ortgnce of this new type df electronic
remote from the dioxirane group to have steric interactions with tuning. The pronosed electr%static model should y?ovide a rational
transstilbeness and7 in either TSor TS;. However, given the 9. ht P tpl t desi P
different charge distributions in T&nd TS, those substituents approach o catalyst design.
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